½üÈÕ£¬À´×Ô±öϦ·¨ÄáÑÇ´óѧµÈ´¦µÄ¿Æѧ¼ÒÃDZíʾ£¬Ä¿Ç°ÓÐÁ½ÖÖ·½·¨¿ÉÒÔµÖÓùAIDS£¬ÀûÓÃÈȼ¤µ°°×»òС·Ö×ÓÀ´¹¥»÷HIVÆðʼ¸ÐȾ½×¶Î¾«ÒºÖеÄÔÏËά£»HIV¾³£»áͨ¹ý¾«ÒºÔÚ¸öÌå¼ä´«²¥£¬Æä×÷ΪÄÐÐÔµÄÉúÖ³Òº°üº¬ÓдóÁ¿ÃûΪµí·ÛÑùÏËάµÄµ°°×Ƭ¶Î³Á»ý£¬ÕâЩµí·ÛÑùÏËά¿ÉÒÔ°ïÖú²¡¶¾Îü¸½µ½ÈËÀàϸ°ûÉÏÀ´´Ù½øHIVµÄ´«²¥£¬¶øÑо¿ÕßÒ²ÍƲ⽵µÍ¾«ÒºÖеí·ÛÑùÏËάµÄÁÆ·¨»ò¿ÉÓÐЧ½µµÍHIVµÄ´«²¥¡£
¿¯µÇÔÚChemistry & BiologyÉϵÄһƪÑо¿ÂÛÎÄÖУ¬Ñо¿ÕßJames Shorter±¨µÀÁ˽ÍĸÖеÄÒ»ÖÖÃûΪHsp104µÄÈȼ¤µ°°×¿ÉÒÔÓÐЧ¹¥»÷¾«ÒºÖеĵí·ÛÑùÏËά£¬Ê×ÏÈHsp104¼°Ò»ÖÖÔöÇ¿µÄ¹¤³Ì»¯Í»±äÌå»áÖ±½Ó½«ÔÏËάÖØËÜΪ·Çµí·ÛÑùÏËάÐÎʽ£»Í¬Ê±Ñо¿Õß»¹ÖÆÔì³öÁËʧ»îµÄHsp104Ö§¼Ü£¬¸ÃÖ§¼Ü¿ÉÒÔ½«ÔÏËάÖØÐÂ×é×°³ÉΪ´ó³ß´çµÄÁ¼ÐÔ²¿¼þ£¬×îÖÕÑо¿Õßͨ¹ýÐÞÊÎHsp104À´Ê¹ÆäͬøÀà×÷ÓÃ×îÖÕʹµÃ¾«ÒºÖеÄÔÏËά·¢Éú²»¿ÉÄæµØ½µ½â¡£
ÿһÖÖ²ßÂÔ¶¼»á½µµÍµí·ÛÑùÏËά´Ù½øHIV¸ÐȾµÄÄÜÁ¦£¬Òò´ËÕâÖÖз½·¨»òÐíÊÇÒ»ÖÖÒÖÖÆHIV´«²¥µÄÐÂÐͲßÂÔ£»¿¯µÇÔÚ¹ú¼ÊÔÓÖ¾eLifeÉϵÄÁíһƪ±¨µÀÖУ¬Ñо¿ÕßÔòÃèÊöÁ˵ڶþÖÖ·½·¨£¬¼´ÀûÓÃÒ»ÖÖС·Ö×ÓÀ´¸ÉÈž«ÒºÖеí·ÛÑùÏËάµÄ½á¹¹£¬½ø¶øÒÖÖÆHIV¸ÐȾ£¬ÕâÖÖÃûΪCLR01µÄ·Ö×ÓͬʱҲ¿ÉÒÔ¹¥»÷HIV²¡¶¾×ÔÉí¡£
ǯÐνṹµÄCLR01·Ö×Ó²»½ö¿ÉÒÔ¸ÉÈÅÔÏËάµÄÐγɣ¬»¹»á·Ö½âÒѾÐγɵÄÔÏËά½á¹¹£¬CLR01»¹»áͨ¹ý¸ÐȾ²¡¶¾¿ÅÁ£µÄÍâĤ½á¹¹À´ÒÖÖÆHIV¿ÅÁ£Í¬ÔÏËάµÄÏ໥×÷Óã»ÔÚCLR01·Ö×Ó´æÔÚµÄÇé¿öÏÂÈËÀàϸ°ûÊÜ°üº¬HIV¾«Òº¸ÐȾµÄ¿ÉÄÜÐԻήµÍ100±¶¡£Ñо¿ÕßShorter˵µÀ£¬CLR01·Ö×Ó±»ÈÏΪ¿ÉÒÔ×÷ΪÐÂÐÍÁÆ·¨À´°ïÖú½µµÍHIVµÄ´«²¥£¬¶øÇÒCLR01·Ö×Ó²¢²»»áϸ°ûĤµÄ¹¦ÄÜ£¬Õâ¾Í˵Ã÷¸Ã·Ö×Ó¿ÉÒÔ±»°²È«²åÈëµ½ÒõµÀÈ󻬼ÁÖÐÀ´°ïÖúµÖÓùHIVµÄ¸ÐȾ¡£
ÏÂÒ»²½Ñо¿Õß½«ÔÚ·ÇÈËÀàµÄÁ鳤ÀදÎï»úÌåÖÐÆÀ¹ÀÁ½ÖÖÁÆ·¨µÄ°²È«ÐÔºÍÓÐЧÐÔ£¬Ñо¿ÕßÏ£ÍûCLR01·Ö×ÓÁÆ·¨ÊÇ×îÓÐЧµÄµÖÓùHIV´«²¥µÄÁÆ·¨£¬ºóÆÚÑо¿ÕßÃÇ»¹½«½øÐиü¶àÉîÈëµÄÑо¿À´¿ª·¢¸ü¶àÒÖÖÆHIV´«²¥µÄÐÂÁÆ·¨¡£
Laura M. Castellano, Stephen M. Bart, Veronica M. Holmes, Drew Weissman, James Shorter
Naturally occurring proteolytic fragments of prostatic acid phosphatase (PAP248-286 and PAP85-120) and semenogelins (SEM1 and SEM2) form amyloid fibrils in seminal fluid, which capture HIV virions and promote infection. For example, PAP248-286 fibrils, termed SEVI (semen-derived enhancer of viral infection), can potentiate HIV infection by several orders of magnitude. Here, we design three disruptive technologies to rapidly antagonize seminal amyloid by repurposing Hsp104, an amyloid-remodeling nanomachine from yeast. First, Hsp104 and an enhanced engineered variant, Hsp104A503V, directly remodel SEVI and PAP85-120 fibrils into non-amyloid forms. Second, we elucidate catalytically inactive Hsp104 scaffolds that do not remodel amyloid structure, but cluster SEVI, PAP85-120, and SEM1(45¨C107) fibrils into larger assemblies. Third, we modify Hsp104 to interact with the chambered protease ClpP, which enables coupled remodeling and degradation to irreversibly clear SEVI and PAP85-120 fibrils. Each strategy diminished the ability of seminal amyloid to promote HIV infection, and could have therapeutic utility. Lump E1, Castellano LM2, Meier C3, Seeliger J4, Erwin N4, Sperlich B4, St¨¹rzel CM1, Usmani S1, Hammond RM2, von Einem J5, Gerold G6, Kreppel F7, Bravo-Rodriguez K8, Pietschmann T6, Holmes VM9, Palesch D1, Zirafi O1, Weissman D9, Sowislok A10, Wettig B10, Heid C10, Kirchhoff F1, Weil T3, Klärner FG11, Schrader T10, Bitan G12, Sanchez-Garcia E8, Winter R4, Shorter J2, M¨¹nch J1.
Semen is the main vector for HIV transmission and contains amyloid fibrils that enhance viral infection. Available microbicides that target viral components have proven largely ineffective in preventing sexual virus transmission. In this study, we establish that CLR01, a 'molecular tweezer' specific for lysine and arginine residues, inhibits the formation of infectivity-enhancing seminal amyloids and remodels preformed fibrils. Moreover, CLR01 abrogates semen-mediated enhancement of viral infection by preventing the formation of virion-amyloid complexes and by directly disrupting the membrane integrity of HIV and other enveloped viruses. We establish that CLR01 acts by binding to the target lysine and arginine residues rather than by a non-specific, colloidal mechanism. CLR01 counteracts both host factors that may be important for HIV transmission and the pathogen itself. These combined anti-amyloid and antiviral activities make CLR01 a promising topical microbicide for blocking infection by HIV and other sexually transmitted viruses.
|